The Frattini p-subalgebra of a solvable Lie p-algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Frattini /7-subalgebra of a Solvable Lie

In this paper we continue our study of the Frattini p-subalgebra of a Lie />-algebra L. We show first that if L is solvable then its Frattini p-subalgebra is an ideal of L. We then consider Lie p-algebras L in which X. is nilpotent and find necessary and sufficient conditions for the Frattini p-subalgebra to be trivial. From this we deduce, in particular, that in such an algebra every ideal als...

متن کامل

Is P(ω) a Subalgebra?

We consider the question of whether P(ω) is a subalgebra whenever it is a quotient of a Boolean algebra by a countably generated ideal. This question was raised privately by Murray Bell. We obtain two partial answers under the open coloring axiom. Topologically our first result is that if a zerodimensional compact space has a zero-set mapping onto βN , then it has a regular closed zero-set mapp...

متن کامل

A Bound for the Nilpotency Class of a Lie Algebra

In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.

متن کامل

The Lie Algebra of Smooth Sections of a T-bundle

In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1997

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091500023415